Step |
Hyp |
Ref |
Expression |
1 |
|
olm1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
olm1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
olm1.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
4 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
6 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
8 |
6 3 7
|
opoc1 |
⊢ ( 𝐾 ∈ OP → ( ( oc ‘ 𝐾 ) ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
9 |
5 8
|
syl |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) ) |
11 |
1 7
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
4 11
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
14 |
1 13 6
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
15 |
12 14
|
syldan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
16 |
10 15
|
eqtrd |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
18 |
1 3
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
19 |
5 18
|
syl |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
20 |
1 13 2 7
|
oldmj4 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) ) = ( 𝑋 ∧ 1 ) ) |
21 |
19 20
|
mpd3an3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 1 ) ) ) = ( 𝑋 ∧ 1 ) ) |
22 |
1 7
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
23 |
4 22
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
24 |
17 21 23
|
3eqtr3d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 1 ) = 𝑋 ) |