Step |
Hyp |
Ref |
Expression |
1 |
|
olm1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
olm1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
olm1.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
4 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
6 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
7 |
6
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
8 |
1 3
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
10 |
|
simpr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
11 |
1 2
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 1 ∧ 𝑋 ) = ( 𝑋 ∧ 1 ) ) |
12 |
5 9 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 1 ∧ 𝑋 ) = ( 𝑋 ∧ 1 ) ) |
13 |
1 2 3
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 1 ) = 𝑋 ) |
14 |
12 13
|
eqtrd |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 1 ∧ 𝑋 ) = 𝑋 ) |