Metamath Proof Explorer


Theorem olm12

Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses olm1.b 𝐵 = ( Base ‘ 𝐾 )
olm1.m = ( meet ‘ 𝐾 )
olm1.u 1 = ( 1. ‘ 𝐾 )
Assertion olm12 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 1 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 olm1.b 𝐵 = ( Base ‘ 𝐾 )
2 olm1.m = ( meet ‘ 𝐾 )
3 olm1.u 1 = ( 1. ‘ 𝐾 )
4 ollat ( 𝐾 ∈ OL → 𝐾 ∈ Lat )
5 4 adantr ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → 𝐾 ∈ Lat )
6 olop ( 𝐾 ∈ OL → 𝐾 ∈ OP )
7 6 adantr ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → 𝐾 ∈ OP )
8 1 3 op1cl ( 𝐾 ∈ OP → 1𝐵 )
9 7 8 syl ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → 1𝐵 )
10 simpr ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → 𝑋𝐵 )
11 1 2 latmcom ( ( 𝐾 ∈ Lat ∧ 1𝐵𝑋𝐵 ) → ( 1 𝑋 ) = ( 𝑋 1 ) )
12 5 9 10 11 syl3anc ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 1 𝑋 ) = ( 𝑋 1 ) )
13 1 2 3 olm11 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 𝑋 1 ) = 𝑋 )
14 12 13 eqtrd ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 1 𝑋 ) = 𝑋 )