Metamath Proof Explorer


Theorem olm12

Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses olm1.b
|- B = ( Base ` K )
olm1.m
|- ./\ = ( meet ` K )
olm1.u
|- .1. = ( 1. ` K )
Assertion olm12
|- ( ( K e. OL /\ X e. B ) -> ( .1. ./\ X ) = X )

Proof

Step Hyp Ref Expression
1 olm1.b
 |-  B = ( Base ` K )
2 olm1.m
 |-  ./\ = ( meet ` K )
3 olm1.u
 |-  .1. = ( 1. ` K )
4 ollat
 |-  ( K e. OL -> K e. Lat )
5 4 adantr
 |-  ( ( K e. OL /\ X e. B ) -> K e. Lat )
6 olop
 |-  ( K e. OL -> K e. OP )
7 6 adantr
 |-  ( ( K e. OL /\ X e. B ) -> K e. OP )
8 1 3 op1cl
 |-  ( K e. OP -> .1. e. B )
9 7 8 syl
 |-  ( ( K e. OL /\ X e. B ) -> .1. e. B )
10 simpr
 |-  ( ( K e. OL /\ X e. B ) -> X e. B )
11 1 2 latmcom
 |-  ( ( K e. Lat /\ .1. e. B /\ X e. B ) -> ( .1. ./\ X ) = ( X ./\ .1. ) )
12 5 9 10 11 syl3anc
 |-  ( ( K e. OL /\ X e. B ) -> ( .1. ./\ X ) = ( X ./\ .1. ) )
13 1 2 3 olm11
 |-  ( ( K e. OL /\ X e. B ) -> ( X ./\ .1. ) = X )
14 12 13 eqtrd
 |-  ( ( K e. OL /\ X e. B ) -> ( .1. ./\ X ) = X )