Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
olop
Next ⟩
olposN
Metamath Proof Explorer
Ascii
Structured
Theorem
olop
Description:
An ortholattice is an orthoposet.
(Contributed by
NM
, 18-Sep-2011)
Ref
Expression
Assertion
olop
⊢
(
𝐾
∈ OL →
𝐾
∈ OP )
Proof
Step
Hyp
Ref
Expression
1
isolat
⊢
(
𝐾
∈ OL ↔ (
𝐾
∈ Lat ∧
𝐾
∈ OP ) )
2
1
simprbi
⊢
(
𝐾
∈ OL →
𝐾
∈ OP )