Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
isolat
Next ⟩
ollat
Metamath Proof Explorer
Ascii
Structured
Theorem
isolat
Description:
The predicate "is an ortholattice."
(Contributed by
NM
, 18-Sep-2011)
Ref
Expression
Assertion
isolat
⊢
(
𝐾
∈ OL ↔ (
𝐾
∈ Lat ∧
𝐾
∈ OP ) )
Proof
Step
Hyp
Ref
Expression
1
df-ol
⊢
OL = ( Lat ∩ OP )
2
1
elin2
⊢
(
𝐾
∈ OL ↔ (
𝐾
∈ Lat ∧
𝐾
∈ OP ) )