Metamath Proof Explorer


Theorem elin2

Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis elin2.x 𝑋 = ( 𝐵𝐶 )
Assertion elin2 ( 𝐴𝑋 ↔ ( 𝐴𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elin2.x 𝑋 = ( 𝐵𝐶 )
2 1 eleq2i ( 𝐴𝑋𝐴 ∈ ( 𝐵𝐶 ) )
3 elin ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
4 2 3 bitri ( 𝐴𝑋 ↔ ( 𝐴𝐵𝐴𝐶 ) )