Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elin2.x | ⊢ 𝑋 = ( 𝐵 ∩ 𝐶 ) | |
Assertion | elin2 | ⊢ ( 𝐴 ∈ 𝑋 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin2.x | ⊢ 𝑋 = ( 𝐵 ∩ 𝐶 ) | |
2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ) |
3 | elin | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) | |
4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ 𝑋 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |