Step |
Hyp |
Ref |
Expression |
1 |
|
opoc1.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
2 |
|
opoc1.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
3 |
|
opoc1.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
5 |
4 1
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) ) |
6 |
4 3
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
7 |
5 6
|
mpdan |
⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
9 |
4 8 2
|
ople1 |
⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) |
10 |
7 9
|
mpdan |
⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) |
11 |
4 2
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) ) |
12 |
4 8 3
|
oplecon1b |
⊢ ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) ) |
13 |
11 5 12
|
mpd3an23 |
⊢ ( 𝐾 ∈ OP → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 0 ) ( le ‘ 𝐾 ) 1 ) ) |
14 |
10 13
|
mpbird |
⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ) |
15 |
4 3
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 1 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
11 15
|
mpdan |
⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
4 8 1
|
ople0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 1 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 1 ) = 0 ) ) |
18 |
16 17
|
mpdan |
⊢ ( 𝐾 ∈ OP → ( ( ⊥ ‘ 1 ) ( le ‘ 𝐾 ) 0 ↔ ( ⊥ ‘ 1 ) = 0 ) ) |
19 |
14 18
|
mpbid |
⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |