Step |
Hyp |
Ref |
Expression |
1 |
|
opoc1.z |
|- .0. = ( 0. ` K ) |
2 |
|
opoc1.u |
|- .1. = ( 1. ` K ) |
3 |
|
opoc1.o |
|- ._|_ = ( oc ` K ) |
4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
5 |
4 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
6 |
4 3
|
opoccl |
|- ( ( K e. OP /\ .0. e. ( Base ` K ) ) -> ( ._|_ ` .0. ) e. ( Base ` K ) ) |
7 |
5 6
|
mpdan |
|- ( K e. OP -> ( ._|_ ` .0. ) e. ( Base ` K ) ) |
8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
9 |
4 8 2
|
ople1 |
|- ( ( K e. OP /\ ( ._|_ ` .0. ) e. ( Base ` K ) ) -> ( ._|_ ` .0. ) ( le ` K ) .1. ) |
10 |
7 9
|
mpdan |
|- ( K e. OP -> ( ._|_ ` .0. ) ( le ` K ) .1. ) |
11 |
4 2
|
op1cl |
|- ( K e. OP -> .1. e. ( Base ` K ) ) |
12 |
4 8 3
|
oplecon1b |
|- ( ( K e. OP /\ .1. e. ( Base ` K ) /\ .0. e. ( Base ` K ) ) -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .0. ) ( le ` K ) .1. ) ) |
13 |
11 5 12
|
mpd3an23 |
|- ( K e. OP -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .0. ) ( le ` K ) .1. ) ) |
14 |
10 13
|
mpbird |
|- ( K e. OP -> ( ._|_ ` .1. ) ( le ` K ) .0. ) |
15 |
4 3
|
opoccl |
|- ( ( K e. OP /\ .1. e. ( Base ` K ) ) -> ( ._|_ ` .1. ) e. ( Base ` K ) ) |
16 |
11 15
|
mpdan |
|- ( K e. OP -> ( ._|_ ` .1. ) e. ( Base ` K ) ) |
17 |
4 8 1
|
ople0 |
|- ( ( K e. OP /\ ( ._|_ ` .1. ) e. ( Base ` K ) ) -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .1. ) = .0. ) ) |
18 |
16 17
|
mpdan |
|- ( K e. OP -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .1. ) = .0. ) ) |
19 |
14 18
|
mpbid |
|- ( K e. OP -> ( ._|_ ` .1. ) = .0. ) |