| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opoccl.b |
|- B = ( Base ` K ) |
| 2 |
|
opoccl.o |
|- ._|_ = ( oc ` K ) |
| 3 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 4 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 5 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 6 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 7 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 8 |
1 3 2 4 5 6 7
|
oposlem |
|- ( ( K e. OP /\ X e. B /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X ( join ` K ) ( ._|_ ` X ) ) = ( 1. ` K ) /\ ( X ( meet ` K ) ( ._|_ ` X ) ) = ( 0. ` K ) ) ) |
| 9 |
8
|
3anidm23 |
|- ( ( K e. OP /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X ( join ` K ) ( ._|_ ` X ) ) = ( 1. ` K ) /\ ( X ( meet ` K ) ( ._|_ ` X ) ) = ( 0. ` K ) ) ) |
| 10 |
9
|
simp1d |
|- ( ( K e. OP /\ X e. B ) -> ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) ) |
| 11 |
10
|
simp1d |
|- ( ( K e. OP /\ X e. B ) -> ( ._|_ ` X ) e. B ) |