Metamath Proof Explorer


Theorem opoccl

Description: Closure of orthocomplement operation. ( choccl analog.) (Contributed by NM, 20-Oct-2011)

Ref Expression
Hypotheses opoccl.b 𝐵 = ( Base ‘ 𝐾 )
opoccl.o = ( oc ‘ 𝐾 )
Assertion opoccl ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( 𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 opoccl.b 𝐵 = ( Base ‘ 𝐾 )
2 opoccl.o = ( oc ‘ 𝐾 )
3 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
4 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
5 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
6 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
7 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
8 1 3 2 4 5 6 7 oposlem ( ( 𝐾 ∈ OP ∧ 𝑋𝐵𝑋𝐵 ) → ( ( ( 𝑋 ) ∈ 𝐵 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( 𝑋 ) ( le ‘ 𝐾 ) ( 𝑋 ) ) ) ∧ ( 𝑋 ( join ‘ 𝐾 ) ( 𝑋 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) )
9 8 3anidm23 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( ( ( 𝑋 ) ∈ 𝐵 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( 𝑋 ) ( le ‘ 𝐾 ) ( 𝑋 ) ) ) ∧ ( 𝑋 ( join ‘ 𝐾 ) ( 𝑋 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) )
10 9 simp1d ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( ( 𝑋 ) ∈ 𝐵 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( 𝑋 ) ( le ‘ 𝐾 ) ( 𝑋 ) ) ) )
11 10 simp1d ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( 𝑋 ) ∈ 𝐵 )