Step |
Hyp |
Ref |
Expression |
1 |
|
opoccl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
opoccl.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
8 |
1 3 2 4 5 6 7
|
oposlem |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) ) |
9 |
8
|
3anidm23 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) = ( 0. ‘ 𝐾 ) ) ) |
10 |
9
|
simp1d |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ( le ‘ 𝐾 ) 𝑋 → ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) ) ) |
11 |
10
|
simp1d |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |