Step |
Hyp |
Ref |
Expression |
1 |
|
opoc1.z |
|- .0. = ( 0. ` K ) |
2 |
|
opoc1.u |
|- .1. = ( 1. ` K ) |
3 |
|
opoc1.o |
|- ._|_ = ( oc ` K ) |
4 |
1 2 3
|
opoc1 |
|- ( K e. OP -> ( ._|_ ` .1. ) = .0. ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
5 2
|
op1cl |
|- ( K e. OP -> .1. e. ( Base ` K ) ) |
7 |
5 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
8 |
5 3
|
opcon1b |
|- ( ( K e. OP /\ .1. e. ( Base ` K ) /\ .0. e. ( Base ` K ) ) -> ( ( ._|_ ` .1. ) = .0. <-> ( ._|_ ` .0. ) = .1. ) ) |
9 |
6 7 8
|
mpd3an23 |
|- ( K e. OP -> ( ( ._|_ ` .1. ) = .0. <-> ( ._|_ ` .0. ) = .1. ) ) |
10 |
4 9
|
mpbid |
|- ( K e. OP -> ( ._|_ ` .0. ) = .1. ) |