Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
opoc0
Next ⟩
opltcon3b
Metamath Proof Explorer
Ascii
Unicode
Theorem
opoc0
Description:
Orthocomplement of orthoposet zero.
(Contributed by
NM
, 24-Jan-2012)
Ref
Expression
Hypotheses
opoc1.z
⊢
0
˙
=
0.
⁡
K
opoc1.u
⊢
1
˙
=
1.
⁡
K
opoc1.o
⊢
⊥
˙
=
oc
⁡
K
Assertion
opoc0
⊢
K
∈
OP
→
⊥
˙
⁡
0
˙
=
1
˙
Proof
Step
Hyp
Ref
Expression
1
opoc1.z
⊢
0
˙
=
0.
⁡
K
2
opoc1.u
⊢
1
˙
=
1.
⁡
K
3
opoc1.o
⊢
⊥
˙
=
oc
⁡
K
4
1
2
3
opoc1
⊢
K
∈
OP
→
⊥
˙
⁡
1
˙
=
0
˙
5
eqid
⊢
Base
K
=
Base
K
6
5
2
op1cl
⊢
K
∈
OP
→
1
˙
∈
Base
K
7
5
1
op0cl
⊢
K
∈
OP
→
0
˙
∈
Base
K
8
5
3
opcon1b
⊢
K
∈
OP
∧
1
˙
∈
Base
K
∧
0
˙
∈
Base
K
→
⊥
˙
⁡
1
˙
=
0
˙
↔
⊥
˙
⁡
0
˙
=
1
˙
9
6
7
8
mpd3an23
⊢
K
∈
OP
→
⊥
˙
⁡
1
˙
=
0
˙
↔
⊥
˙
⁡
0
˙
=
1
˙
10
4
9
mpbid
⊢
K
∈
OP
→
⊥
˙
⁡
0
˙
=
1
˙