Metamath Proof Explorer


Theorem opoc0

Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012)

Ref Expression
Hypotheses opoc1.z 0 = ( 0. ‘ 𝐾 )
opoc1.u 1 = ( 1. ‘ 𝐾 )
opoc1.o = ( oc ‘ 𝐾 )
Assertion opoc0 ( 𝐾 ∈ OP → ( 0 ) = 1 )

Proof

Step Hyp Ref Expression
1 opoc1.z 0 = ( 0. ‘ 𝐾 )
2 opoc1.u 1 = ( 1. ‘ 𝐾 )
3 opoc1.o = ( oc ‘ 𝐾 )
4 1 2 3 opoc1 ( 𝐾 ∈ OP → ( 1 ) = 0 )
5 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
6 5 2 op1cl ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) )
7 5 1 op0cl ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) )
8 5 3 opcon1b ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ∧ 0 ∈ ( Base ‘ 𝐾 ) ) → ( ( 1 ) = 0 ↔ ( 0 ) = 1 ) )
9 6 7 8 mpd3an23 ( 𝐾 ∈ OP → ( ( 1 ) = 0 ↔ ( 0 ) = 1 ) )
10 4 9 mpbid ( 𝐾 ∈ OP → ( 0 ) = 1 )