Description: Orthocomplement contraposition law. ( negcon1 analog.) (Contributed by NM, 24-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | opcon1b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = 𝑌 ↔ ( ⊥ ‘ 𝑌 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | opoccl.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 3 | 1 2 | opcon2b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( ⊥ ‘ 𝑌 ) ↔ 𝑌 = ( ⊥ ‘ 𝑋 ) ) ) |
| 4 | eqcom | ⊢ ( ( ⊥ ‘ 𝑌 ) = 𝑋 ↔ 𝑋 = ( ⊥ ‘ 𝑌 ) ) | |
| 5 | eqcom | ⊢ ( ( ⊥ ‘ 𝑋 ) = 𝑌 ↔ 𝑌 = ( ⊥ ‘ 𝑋 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = 𝑌 ) ) |
| 7 | 6 | bicomd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = 𝑌 ↔ ( ⊥ ‘ 𝑌 ) = 𝑋 ) ) |