Step |
Hyp |
Ref |
Expression |
1 |
|
op0le.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
op0le.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
op0le.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
1 2 3
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ 𝑋 ) |
5 |
4
|
biantrud |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≤ 0 ↔ ( 𝑋 ≤ 0 ∧ 0 ≤ 𝑋 ) ) ) |
6 |
|
opposet |
⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |
7 |
6
|
adantr |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
8 |
|
simpr |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
9 |
1 3
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
11 |
1 2
|
posasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( ( 𝑋 ≤ 0 ∧ 0 ≤ 𝑋 ) ↔ 𝑋 = 0 ) ) |
12 |
7 8 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ≤ 0 ∧ 0 ≤ 𝑋 ) ↔ 𝑋 = 0 ) ) |
13 |
5 12
|
bitrd |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≤ 0 ↔ 𝑋 = 0 ) ) |