Metamath Proof Explorer


Theorem ople0

Description: An element less than or equal to zero equals zero. ( chle0 analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses op0le.b B=BaseK
op0le.l ˙=K
op0le.z 0˙=0.K
Assertion ople0 KOPXBX˙0˙X=0˙

Proof

Step Hyp Ref Expression
1 op0le.b B=BaseK
2 op0le.l ˙=K
3 op0le.z 0˙=0.K
4 1 2 3 op0le KOPXB0˙˙X
5 4 biantrud KOPXBX˙0˙X˙0˙0˙˙X
6 opposet KOPKPoset
7 6 adantr KOPXBKPoset
8 simpr KOPXBXB
9 1 3 op0cl KOP0˙B
10 9 adantr KOPXB0˙B
11 1 2 posasymb KPosetXB0˙BX˙0˙0˙˙XX=0˙
12 7 8 10 11 syl3anc KOPXBX˙0˙0˙˙XX=0˙
13 5 12 bitrd KOPXBX˙0˙X=0˙