Metamath Proof Explorer


Theorem opnlen0

Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd and op0le to see if this is useful elsewhere. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses op0le.b B=BaseK
op0le.l ˙=K
op0le.z 0˙=0.K
Assertion opnlen0 KOPXBYB¬X˙YX0˙

Proof

Step Hyp Ref Expression
1 op0le.b B=BaseK
2 op0le.l ˙=K
3 op0le.z 0˙=0.K
4 1 2 3 op0le KOPYB0˙˙Y
5 4 3adant2 KOPXBYB0˙˙Y
6 breq1 X=0˙X˙Y0˙˙Y
7 5 6 syl5ibrcom KOPXBYBX=0˙X˙Y
8 7 necon3bd KOPXBYB¬X˙YX0˙
9 8 imp KOPXBYB¬X˙YX0˙