Metamath Proof Explorer


Theorem lhpjat2

Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses lhpjat.l ˙ = K
lhpjat.j ˙ = join K
lhpjat.u 1 ˙ = 1. K
lhpjat.a A = Atoms K
lhpjat.h H = LHyp K
Assertion lhpjat2 K HL W H P A ¬ P ˙ W P ˙ W = 1 ˙

Proof

Step Hyp Ref Expression
1 lhpjat.l ˙ = K
2 lhpjat.j ˙ = join K
3 lhpjat.u 1 ˙ = 1. K
4 lhpjat.a A = Atoms K
5 lhpjat.h H = LHyp K
6 hllat K HL K Lat
7 6 ad2antrr K HL W H P A ¬ P ˙ W K Lat
8 eqid Base K = Base K
9 8 4 atbase P A P Base K
10 9 ad2antrl K HL W H P A ¬ P ˙ W P Base K
11 8 5 lhpbase W H W Base K
12 11 ad2antlr K HL W H P A ¬ P ˙ W W Base K
13 8 2 latjcom K Lat P Base K W Base K P ˙ W = W ˙ P
14 7 10 12 13 syl3anc K HL W H P A ¬ P ˙ W P ˙ W = W ˙ P
15 1 2 3 4 5 lhpjat1 K HL W H P A ¬ P ˙ W W ˙ P = 1 ˙
16 14 15 eqtrd K HL W H P A ¬ P ˙ W P ˙ W = 1 ˙