Metamath Proof Explorer


Theorem lhpj1

Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unity. (Contributed by NM, 7-Dec-2012)

Ref Expression
Hypotheses lhpj1.b B=BaseK
lhpj1.l ˙=K
lhpj1.j ˙=joinK
lhpj1.u 1˙=1.K
lhpj1.h H=LHypK
Assertion lhpj1 KHLWHXB¬X˙WW˙X=1˙

Proof

Step Hyp Ref Expression
1 lhpj1.b B=BaseK
2 lhpj1.l ˙=K
3 lhpj1.j ˙=joinK
4 lhpj1.u 1˙=1.K
5 lhpj1.h H=LHypK
6 simpll KHLWHXBKHL
7 simpr KHLWHXBXB
8 1 5 lhpbase WHWB
9 8 ad2antlr KHLWHXBWB
10 eqid AtomsK=AtomsK
11 1 2 10 hlrelat2 KHLXBWB¬X˙WpAtomsKp˙X¬p˙W
12 6 7 9 11 syl3anc KHLWHXB¬X˙WpAtomsKp˙X¬p˙W
13 simp1l KHLWHXBpAtomsKp˙X¬p˙WKHLWH
14 simp2 KHLWHXBpAtomsKp˙X¬p˙WpAtomsK
15 simp3r KHLWHXBpAtomsKp˙X¬p˙W¬p˙W
16 2 3 4 10 5 lhpjat1 KHLWHpAtomsK¬p˙WW˙p=1˙
17 13 14 15 16 syl12anc KHLWHXBpAtomsKp˙X¬p˙WW˙p=1˙
18 simp3l KHLWHXBpAtomsKp˙X¬p˙Wp˙X
19 simp1ll KHLWHXBpAtomsKp˙X¬p˙WKHL
20 19 hllatd KHLWHXBpAtomsKp˙X¬p˙WKLat
21 1 10 atbase pAtomsKpB
22 21 3ad2ant2 KHLWHXBpAtomsKp˙X¬p˙WpB
23 simp1r KHLWHXBpAtomsKp˙X¬p˙WXB
24 9 3ad2ant1 KHLWHXBpAtomsKp˙X¬p˙WWB
25 1 2 3 latjlej2 KLatpBXBWBp˙XW˙p˙W˙X
26 20 22 23 24 25 syl13anc KHLWHXBpAtomsKp˙X¬p˙Wp˙XW˙p˙W˙X
27 18 26 mpd KHLWHXBpAtomsKp˙X¬p˙WW˙p˙W˙X
28 17 27 eqbrtrrd KHLWHXBpAtomsKp˙X¬p˙W1˙˙W˙X
29 hlop KHLKOP
30 19 29 syl KHLWHXBpAtomsKp˙X¬p˙WKOP
31 1 3 latjcl KLatWBXBW˙XB
32 20 24 23 31 syl3anc KHLWHXBpAtomsKp˙X¬p˙WW˙XB
33 1 2 4 op1le KOPW˙XB1˙˙W˙XW˙X=1˙
34 30 32 33 syl2anc KHLWHXBpAtomsKp˙X¬p˙W1˙˙W˙XW˙X=1˙
35 28 34 mpbid KHLWHXBpAtomsKp˙X¬p˙WW˙X=1˙
36 35 rexlimdv3a KHLWHXBpAtomsKp˙X¬p˙WW˙X=1˙
37 12 36 sylbid KHLWHXB¬X˙WW˙X=1˙
38 37 impr KHLWHXB¬X˙WW˙X=1˙