Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unity. (Contributed by NM, 7-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhpj1.b | |
|
lhpj1.l | |
||
lhpj1.j | |
||
lhpj1.u | |
||
lhpj1.h | |
||
Assertion | lhpj1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpj1.b | |
|
2 | lhpj1.l | |
|
3 | lhpj1.j | |
|
4 | lhpj1.u | |
|
5 | lhpj1.h | |
|
6 | simpll | |
|
7 | simpr | |
|
8 | 1 5 | lhpbase | |
9 | 8 | ad2antlr | |
10 | eqid | |
|
11 | 1 2 10 | hlrelat2 | |
12 | 6 7 9 11 | syl3anc | |
13 | simp1l | |
|
14 | simp2 | |
|
15 | simp3r | |
|
16 | 2 3 4 10 5 | lhpjat1 | |
17 | 13 14 15 16 | syl12anc | |
18 | simp3l | |
|
19 | simp1ll | |
|
20 | 19 | hllatd | |
21 | 1 10 | atbase | |
22 | 21 | 3ad2ant2 | |
23 | simp1r | |
|
24 | 9 | 3ad2ant1 | |
25 | 1 2 3 | latjlej2 | |
26 | 20 22 23 24 25 | syl13anc | |
27 | 18 26 | mpd | |
28 | 17 27 | eqbrtrrd | |
29 | hlop | |
|
30 | 19 29 | syl | |
31 | 1 3 | latjcl | |
32 | 20 24 23 31 | syl3anc | |
33 | 1 2 4 | op1le | |
34 | 30 32 33 | syl2anc | |
35 | 28 34 | mpbid | |
36 | 35 | rexlimdv3a | |
37 | 12 36 | sylbid | |
38 | 37 | impr | |