Step |
Hyp |
Ref |
Expression |
1 |
|
lhpjat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhpjat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lhpjat.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
4 |
|
lhpjat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
lhpjat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
8 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
10 |
9
|
ad2antrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
11 |
8 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
13 |
8 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑊 ) = ( 𝑊 ∨ 𝑃 ) ) |
14 |
7 10 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑊 ) = ( 𝑊 ∨ 𝑃 ) ) |
15 |
1 2 3 4 5
|
lhpjat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑃 ) = 1 ) |
16 |
14 15
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑊 ) = 1 ) |