Metamath Proof Explorer


Theorem cdleme4

Description: Part of proof of Lemma E in Crawley p. 113. F and G represent f(s) and f_s(r). Here show p \/ q = r \/ u at the top of p. 114. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l
|- .<_ = ( le ` K )
cdleme4.j
|- .\/ = ( join ` K )
cdleme4.m
|- ./\ = ( meet ` K )
cdleme4.a
|- A = ( Atoms ` K )
cdleme4.h
|- H = ( LHyp ` K )
cdleme4.u
|- U = ( ( P .\/ Q ) ./\ W )
Assertion cdleme4
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) = ( R .\/ U ) )

Proof

Step Hyp Ref Expression
1 cdleme4.l
 |-  .<_ = ( le ` K )
2 cdleme4.j
 |-  .\/ = ( join ` K )
3 cdleme4.m
 |-  ./\ = ( meet ` K )
4 cdleme4.a
 |-  A = ( Atoms ` K )
5 cdleme4.h
 |-  H = ( LHyp ` K )
6 cdleme4.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 6 oveq2i
 |-  ( R .\/ U ) = ( R .\/ ( ( P .\/ Q ) ./\ W ) )
8 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> K e. HL )
9 simp23l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> R e. A )
10 simp21
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> P e. A )
11 simp22
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> Q e. A )
12 eqid
 |-  ( Base ` K ) = ( Base ` K )
13 12 2 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )
14 8 10 11 13 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) e. ( Base ` K ) )
15 simp1r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> W e. H )
16 12 5 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
17 15 16 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> W e. ( Base ` K ) )
18 simp3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) )
19 12 1 2 3 4 atmod3i1
 |-  ( ( K e. HL /\ ( R e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( R .\/ W ) ) )
20 8 9 14 17 18 19 syl131anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( R .\/ W ) ) )
21 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) )
22 simp23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R e. A /\ -. R .<_ W ) )
23 eqid
 |-  ( 1. ` K ) = ( 1. ` K )
24 1 2 23 4 5 lhpjat2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) )
25 21 22 24 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ W ) = ( 1. ` K ) )
26 25 oveq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) )
27 hlol
 |-  ( K e. HL -> K e. OL )
28 8 27 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> K e. OL )
29 12 3 23 olm11
 |-  ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) )
30 28 14 29 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) )
31 20 26 30 3eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ Q ) )
32 7 31 syl5req
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) = ( R .\/ U ) )