| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme4.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme4.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme4.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme4.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme4.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme4.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
6
|
oveq2i |
|- ( R .\/ U ) = ( R .\/ ( ( P .\/ Q ) ./\ W ) ) |
| 8 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> K e. HL ) |
| 9 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> R e. A ) |
| 10 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> P e. A ) |
| 11 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> Q e. A ) |
| 12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 13 |
12 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 14 |
8 10 11 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 15 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> W e. H ) |
| 16 |
12 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> W e. ( Base ` K ) ) |
| 18 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) ) |
| 19 |
12 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( R .\/ W ) ) ) |
| 20 |
8 9 14 17 18 19
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( R .\/ W ) ) ) |
| 21 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) ) |
| 22 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R e. A /\ -. R .<_ W ) ) |
| 23 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 24 |
1 2 23 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
| 25 |
21 22 24
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
| 26 |
25
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) ) |
| 27 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 28 |
8 27
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> K e. OL ) |
| 29 |
12 3 23
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
| 30 |
28 14 29
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
| 31 |
20 26 30
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ Q ) ) |
| 32 |
7 31
|
eqtr2id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) = ( R .\/ U ) ) |