Metamath Proof Explorer


Theorem cdleme4

Description: Part of proof of Lemma E in Crawley p. 113. F and G represent f(s) and f_s(r). Here show p \/ q = r \/ u at the top of p. 114. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
Assertion cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 6 oveq2i R˙U=R˙P˙Q˙W
8 simp1l KHLWHPAQARA¬R˙WR˙P˙QKHL
9 simp23l KHLWHPAQARA¬R˙WR˙P˙QRA
10 simp21 KHLWHPAQARA¬R˙WR˙P˙QPA
11 simp22 KHLWHPAQARA¬R˙WR˙P˙QQA
12 eqid BaseK=BaseK
13 12 2 4 hlatjcl KHLPAQAP˙QBaseK
14 8 10 11 13 syl3anc KHLWHPAQARA¬R˙WR˙P˙QP˙QBaseK
15 simp1r KHLWHPAQARA¬R˙WR˙P˙QWH
16 12 5 lhpbase WHWBaseK
17 15 16 syl KHLWHPAQARA¬R˙WR˙P˙QWBaseK
18 simp3 KHLWHPAQARA¬R˙WR˙P˙QR˙P˙Q
19 12 1 2 3 4 atmod3i1 KHLRAP˙QBaseKWBaseKR˙P˙QR˙P˙Q˙W=P˙Q˙R˙W
20 8 9 14 17 18 19 syl131anc KHLWHPAQARA¬R˙WR˙P˙QR˙P˙Q˙W=P˙Q˙R˙W
21 simp1 KHLWHPAQARA¬R˙WR˙P˙QKHLWH
22 simp23 KHLWHPAQARA¬R˙WR˙P˙QRA¬R˙W
23 eqid 1.K=1.K
24 1 2 23 4 5 lhpjat2 KHLWHRA¬R˙WR˙W=1.K
25 21 22 24 syl2anc KHLWHPAQARA¬R˙WR˙P˙QR˙W=1.K
26 25 oveq2d KHLWHPAQARA¬R˙WR˙P˙QP˙Q˙R˙W=P˙Q˙1.K
27 hlol KHLKOL
28 8 27 syl KHLWHPAQARA¬R˙WR˙P˙QKOL
29 12 3 23 olm11 KOLP˙QBaseKP˙Q˙1.K=P˙Q
30 28 14 29 syl2anc KHLWHPAQARA¬R˙WR˙P˙QP˙Q˙1.K=P˙Q
31 20 26 30 3eqtrd KHLWHPAQARA¬R˙WR˙P˙QR˙P˙Q˙W=P˙Q
32 7 31 eqtr2id KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U