Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme4.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
6
|
oveq2i |
⊢ ( 𝑅 ∨ 𝑈 ) = ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝐾 ∈ HL ) |
9 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑅 ∈ 𝐴 ) |
10 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑄 ∈ 𝐴 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
13 |
12 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
8 10 11 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑊 ∈ 𝐻 ) |
16 |
12 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
19 |
12 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑊 ) ) ) |
20 |
8 9 14 17 18 19
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑊 ) ) ) |
21 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
23 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
24 |
1 2 23 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑅 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
25 |
21 22 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
27 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
28 |
8 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝐾 ∈ OL ) |
29 |
12 3 23
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
30 |
28 14 29
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
31 |
20 26 30
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
32 |
7 31
|
eqtr2id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑈 ) ) |