Metamath Proof Explorer


Theorem hlol

Description: A Hilbert lattice is an ortholattice. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )

Proof

Step Hyp Ref Expression
1 hloml ( 𝐾 ∈ HL → 𝐾 ∈ OML )
2 omlol ( 𝐾 ∈ OML → 𝐾 ∈ OL )
3 1 2 syl ( 𝐾 ∈ HL → 𝐾 ∈ OL )