Metamath Proof Explorer


Theorem omlol

Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion omlol ( 𝐾 ∈ OML → 𝐾 ∈ OL )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
2 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
3 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
4 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
5 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
6 1 2 3 4 5 isoml ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑦𝑦 = ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) ) )
7 6 simplbi ( 𝐾 ∈ OML → 𝐾 ∈ OL )