| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isoml.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
isoml.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
isoml.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
isoml.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
isoml.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
| 7 |
6 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
| 9 |
8 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 10 |
9
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) |
| 12 |
11 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 13 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑥 = 𝑥 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ( meet ‘ 𝐾 ) ) |
| 15 |
14 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ∧ ) |
| 16 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑦 = 𝑦 ) |
| 17 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ( oc ‘ 𝐾 ) ) |
| 18 |
17 5
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ⊥ ) |
| 19 |
18
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) = ( ⊥ ‘ 𝑥 ) ) |
| 20 |
15 16 19
|
oveq123d |
⊢ ( 𝑘 = 𝐾 → ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) |
| 21 |
12 13 20
|
oveq123d |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) |
| 22 |
21
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ↔ 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) |
| 23 |
10 22
|
imbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| 24 |
7 23
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| 25 |
7 24
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| 26 |
|
df-oml |
⊢ OML = { 𝑘 ∈ OL ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) } |
| 27 |
25 26
|
elrab2 |
⊢ ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |