Metamath Proof Explorer


Theorem isomliN

Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011) (New usage is discouraged.)

Ref Expression
Hypotheses isomli.0 𝐾 ∈ OL
isomli.b 𝐵 = ( Base ‘ 𝐾 )
isomli.l = ( le ‘ 𝐾 )
isomli.j = ( join ‘ 𝐾 )
isomli.m = ( meet ‘ 𝐾 )
isomli.o = ( oc ‘ 𝐾 )
isomli.7 ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 𝑦𝑦 = ( 𝑥 ( 𝑦 ( 𝑥 ) ) ) ) )
Assertion isomliN 𝐾 ∈ OML

Proof

Step Hyp Ref Expression
1 isomli.0 𝐾 ∈ OL
2 isomli.b 𝐵 = ( Base ‘ 𝐾 )
3 isomli.l = ( le ‘ 𝐾 )
4 isomli.j = ( join ‘ 𝐾 )
5 isomli.m = ( meet ‘ 𝐾 )
6 isomli.o = ( oc ‘ 𝐾 )
7 isomli.7 ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 𝑦𝑦 = ( 𝑥 ( 𝑦 ( 𝑥 ) ) ) ) )
8 7 rgen2 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦𝑦 = ( 𝑥 ( 𝑦 ( 𝑥 ) ) ) )
9 2 3 4 5 6 isoml ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦𝑦 = ( 𝑥 ( 𝑦 ( 𝑥 ) ) ) ) ) )
10 1 8 9 mpbir2an 𝐾 ∈ OML