Metamath Proof Explorer


Theorem isomliN

Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011) (New usage is discouraged.)

Ref Expression
Hypotheses isomli.0
|- K e. OL
isomli.b
|- B = ( Base ` K )
isomli.l
|- .<_ = ( le ` K )
isomli.j
|- .\/ = ( join ` K )
isomli.m
|- ./\ = ( meet ` K )
isomli.o
|- ._|_ = ( oc ` K )
isomli.7
|- ( ( x e. B /\ y e. B ) -> ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) )
Assertion isomliN
|- K e. OML

Proof

Step Hyp Ref Expression
1 isomli.0
 |-  K e. OL
2 isomli.b
 |-  B = ( Base ` K )
3 isomli.l
 |-  .<_ = ( le ` K )
4 isomli.j
 |-  .\/ = ( join ` K )
5 isomli.m
 |-  ./\ = ( meet ` K )
6 isomli.o
 |-  ._|_ = ( oc ` K )
7 isomli.7
 |-  ( ( x e. B /\ y e. B ) -> ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) )
8 7 rgen2
 |-  A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) )
9 2 3 4 5 6 isoml
 |-  ( K e. OML <-> ( K e. OL /\ A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) )
10 1 8 9 mpbir2an
 |-  K e. OML