Metamath Proof Explorer
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
isomli.0 |
|
|
|
isomli.b |
|
|
|
isomli.l |
|
|
|
isomli.j |
|
|
|
isomli.m |
|
|
|
isomli.o |
|
|
|
isomli.7 |
|
|
Assertion |
isomliN |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isomli.0 |
|
2 |
|
isomli.b |
|
3 |
|
isomli.l |
|
4 |
|
isomli.j |
|
5 |
|
isomli.m |
|
6 |
|
isomli.o |
|
7 |
|
isomli.7 |
|
8 |
7
|
rgen2 |
|
9 |
2 3 4 5 6
|
isoml |
|
10 |
1 8 9
|
mpbir2an |
|