| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atmod.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | atmod.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | atmod.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | atmod.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | atmod.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  𝐾  ∈  HL ) | 
						
							| 7 |  | simp21 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  𝑃  ∈  𝐴 ) | 
						
							| 8 |  | simp23 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | simp22 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  𝑃  ≤  𝑋 ) | 
						
							| 11 | 1 2 3 4 5 | atmod1i1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  ( 𝑃  ∨  ( 𝑌  ∧  𝑋 ) )  =  ( ( 𝑃  ∨  𝑌 )  ∧  𝑋 ) ) | 
						
							| 12 | 6 7 8 9 10 11 | syl131anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  ( 𝑃  ∨  ( 𝑌  ∧  𝑋 ) )  =  ( ( 𝑃  ∨  𝑌 )  ∧  𝑋 ) ) | 
						
							| 13 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  𝐾  ∈  Lat ) | 
						
							| 15 | 1 4 | latmcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∧  𝑌 )  =  ( 𝑌  ∧  𝑋 ) ) | 
						
							| 16 | 14 9 8 15 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  ( 𝑋  ∧  𝑌 )  =  ( 𝑌  ∧  𝑋 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  ( 𝑃  ∨  ( 𝑋  ∧  𝑌 ) )  =  ( 𝑃  ∨  ( 𝑌  ∧  𝑋 ) ) ) | 
						
							| 18 | 1 5 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 ) | 
						
							| 19 | 7 18 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  𝑃  ∈  𝐵 ) | 
						
							| 20 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑃  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 21 | 14 19 8 20 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  ( 𝑃  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 22 | 1 4 | latmcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑌 )  ∈  𝐵 )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑌 ) )  =  ( ( 𝑃  ∨  𝑌 )  ∧  𝑋 ) ) | 
						
							| 23 | 14 9 21 22 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑌 ) )  =  ( ( 𝑃  ∨  𝑌 )  ∧  𝑋 ) ) | 
						
							| 24 | 12 17 23 | 3eqtr4d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑃  ≤  𝑋 )  →  ( 𝑃  ∨  ( 𝑋  ∧  𝑌 ) )  =  ( 𝑋  ∧  ( 𝑃  ∨  𝑌 ) ) ) |