Metamath Proof Explorer


Theorem cdleme4a

Description: Part of proof of Lemma E in Crawley p. 114 top. G represents f_s(r). Auxiliary lemma derived from cdleme5 . We show f_s(r) <_ p \/ q. (Contributed by NM, 10-Nov-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
cdleme4.f F=S˙U˙Q˙P˙S˙W
cdleme4.g G=P˙Q˙F˙R˙S˙W
Assertion cdleme4a KHLWHPAQARASAG˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 cdleme4.f F=S˙U˙Q˙P˙S˙W
8 cdleme4.g G=P˙Q˙F˙R˙S˙W
9 simp1l KHLWHPAQARASAKHL
10 9 hllatd KHLWHPAQARASAKLat
11 simp21 KHLWHPAQARASAPA
12 simp22 KHLWHPAQARASAQA
13 eqid BaseK=BaseK
14 13 2 4 hlatjcl KHLPAQAP˙QBaseK
15 9 11 12 14 syl3anc KHLWHPAQARASAP˙QBaseK
16 simp1r KHLWHPAQARASAWH
17 simp3 KHLWHPAQARASASA
18 1 2 3 4 5 6 7 13 cdleme1b KHLWHPAQASAFBaseK
19 9 16 11 12 17 18 syl23anc KHLWHPAQARASAFBaseK
20 simp23 KHLWHPAQARASARA
21 13 2 4 hlatjcl KHLRASAR˙SBaseK
22 9 20 17 21 syl3anc KHLWHPAQARASAR˙SBaseK
23 13 5 lhpbase WHWBaseK
24 16 23 syl KHLWHPAQARASAWBaseK
25 13 3 latmcl KLatR˙SBaseKWBaseKR˙S˙WBaseK
26 10 22 24 25 syl3anc KHLWHPAQARASAR˙S˙WBaseK
27 13 2 latjcl KLatFBaseKR˙S˙WBaseKF˙R˙S˙WBaseK
28 10 19 26 27 syl3anc KHLWHPAQARASAF˙R˙S˙WBaseK
29 13 1 3 latmle1 KLatP˙QBaseKF˙R˙S˙WBaseKP˙Q˙F˙R˙S˙W˙P˙Q
30 10 15 28 29 syl3anc KHLWHPAQARASAP˙Q˙F˙R˙S˙W˙P˙Q
31 8 30 eqbrtrid KHLWHPAQARASAG˙P˙Q