Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
|
2 |
|
cdleme4.j |
|
3 |
|
cdleme4.m |
|
4 |
|
cdleme4.a |
|
5 |
|
cdleme4.h |
|
6 |
|
cdleme4.u |
|
7 |
|
cdleme4.f |
|
8 |
|
cdleme4.g |
|
9 |
8
|
oveq2i |
|
10 |
|
simp1l |
|
11 |
|
simp23l |
|
12 |
|
simp21 |
|
13 |
|
simp22 |
|
14 |
|
eqid |
|
15 |
14 2 4
|
hlatjcl |
|
16 |
10 12 13 15
|
syl3anc |
|
17 |
10
|
hllatd |
|
18 |
|
simp1 |
|
19 |
|
simp3ll |
|
20 |
1 2 3 4 5 6 7 14
|
cdleme1b |
|
21 |
18 12 13 19 20
|
syl13anc |
|
22 |
14 2 4
|
hlatjcl |
|
23 |
10 11 19 22
|
syl3anc |
|
24 |
|
simp1r |
|
25 |
14 5
|
lhpbase |
|
26 |
24 25
|
syl |
|
27 |
14 3
|
latmcl |
|
28 |
17 23 26 27
|
syl3anc |
|
29 |
14 2
|
latjcl |
|
30 |
17 21 28 29
|
syl3anc |
|
31 |
|
simp3r |
|
32 |
14 1 2 3 4
|
atmod3i1 |
|
33 |
10 11 16 30 31 32
|
syl131anc |
|
34 |
14 4
|
atbase |
|
35 |
19 34
|
syl |
|
36 |
14 1 2
|
latlej2 |
|
37 |
17 35 16 36
|
syl3anc |
|
38 |
14 4
|
atbase |
|
39 |
11 38
|
syl |
|
40 |
14 2
|
latj12 |
|
41 |
17 39 21 35 40
|
syl13anc |
|
42 |
1 2 3 4 5 6 14
|
cdleme0aa |
|
43 |
18 12 13 42
|
syl3anc |
|
44 |
14 2
|
latj12 |
|
45 |
17 35 39 43 44
|
syl13anc |
|
46 |
1 2 3 4 5 6
|
cdleme4 |
|
47 |
46
|
3adant3l |
|
48 |
47
|
oveq2d |
|
49 |
14 2
|
latjcom |
|
50 |
17 21 35 49
|
syl3anc |
|
51 |
|
simp3l |
|
52 |
1 2 3 4 5 6 7
|
cdleme1 |
|
53 |
18 12 13 51 52
|
syl13anc |
|
54 |
50 53
|
eqtrd |
|
55 |
54
|
oveq2d |
|
56 |
45 48 55
|
3eqtr4d |
|
57 |
1 2 4
|
hlatlej1 |
|
58 |
10 11 19 57
|
syl3anc |
|
59 |
14 1 2 3 4
|
atmod3i1 |
|
60 |
10 11 23 26 58 59
|
syl131anc |
|
61 |
|
simp23r |
|
62 |
|
eqid |
|
63 |
1 2 62 4 5
|
lhpjat2 |
|
64 |
18 11 61 63
|
syl12anc |
|
65 |
64
|
oveq2d |
|
66 |
|
hlol |
|
67 |
10 66
|
syl |
|
68 |
14 3 62
|
olm11 |
|
69 |
67 23 68
|
syl2anc |
|
70 |
65 69
|
eqtrd |
|
71 |
60 70
|
eqtrd |
|
72 |
71
|
oveq2d |
|
73 |
41 56 72
|
3eqtr4d |
|
74 |
14 2
|
latj12 |
|
75 |
17 21 39 28 74
|
syl13anc |
|
76 |
73 75
|
eqtrd |
|
77 |
37 76
|
breqtrd |
|
78 |
14 2
|
latjcl |
|
79 |
17 39 30 78
|
syl3anc |
|
80 |
14 1 3
|
latleeqm1 |
|
81 |
17 16 79 80
|
syl3anc |
|
82 |
77 81
|
mpbid |
|
83 |
33 82
|
eqtrd |
|
84 |
9 83
|
eqtrid |
|