Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme4.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme4.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme4.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
9 |
8
|
oveq2i |
⊢ ( 𝑅 ∨ 𝐺 ) = ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
11 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
12 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
13 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
15 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
10 12 13 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
10
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
18 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
simp3ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) |
20 |
1 2 3 4 5 6 7 14
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
21 |
18 12 13 19 20
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
22 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
10 11 19 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
25 |
14 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
27 |
14 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
17 23 26 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
14 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
17 21 28 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
32 |
14 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) ) |
33 |
10 11 16 30 31 32
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) ) |
34 |
14 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
35 |
19 34
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
36 |
14 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑆 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
37 |
17 35 16 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑆 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
38 |
14 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
39 |
11 38
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
40 |
14 2
|
latj12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑅 ∨ ( 𝐹 ∨ 𝑆 ) ) = ( 𝐹 ∨ ( 𝑅 ∨ 𝑆 ) ) ) |
41 |
17 39 21 35 40
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ ( 𝐹 ∨ 𝑆 ) ) = ( 𝐹 ∨ ( 𝑅 ∨ 𝑆 ) ) ) |
42 |
1 2 3 4 5 6 14
|
cdleme0aa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
43 |
18 12 13 42
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
44 |
14 2
|
latj12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑆 ∨ ( 𝑅 ∨ 𝑈 ) ) = ( 𝑅 ∨ ( 𝑆 ∨ 𝑈 ) ) ) |
45 |
17 35 39 43 44
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∨ ( 𝑅 ∨ 𝑈 ) ) = ( 𝑅 ∨ ( 𝑆 ∨ 𝑈 ) ) ) |
46 |
1 2 3 4 5 6
|
cdleme4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑈 ) ) |
47 |
46
|
3adant3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑈 ) ) |
48 |
47
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑆 ∨ ( 𝑅 ∨ 𝑈 ) ) ) |
49 |
14 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∨ 𝑆 ) = ( 𝑆 ∨ 𝐹 ) ) |
50 |
17 21 35 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ∨ 𝑆 ) = ( 𝑆 ∨ 𝐹 ) ) |
51 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
52 |
1 2 3 4 5 6 7
|
cdleme1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ) → ( 𝑆 ∨ 𝐹 ) = ( 𝑆 ∨ 𝑈 ) ) |
53 |
18 12 13 51 52
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∨ 𝐹 ) = ( 𝑆 ∨ 𝑈 ) ) |
54 |
50 53
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑈 ) ) |
55 |
54
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ ( 𝐹 ∨ 𝑆 ) ) = ( 𝑅 ∨ ( 𝑆 ∨ 𝑈 ) ) ) |
56 |
45 48 55
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑅 ∨ ( 𝐹 ∨ 𝑆 ) ) ) |
57 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → 𝑅 ≤ ( 𝑅 ∨ 𝑆 ) ) |
58 |
10 11 19 57
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≤ ( 𝑅 ∨ 𝑆 ) ) |
59 |
14 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑅 ≤ ( 𝑅 ∨ 𝑆 ) ) → ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑊 ) ) ) |
60 |
10 11 23 26 58 59
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑊 ) ) ) |
61 |
|
simp23r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑅 ≤ 𝑊 ) |
62 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
63 |
1 2 62 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑅 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
64 |
18 11 61 63
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
65 |
64
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑊 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
66 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
67 |
10 66
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ OL ) |
68 |
14 3 62
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑅 ∨ 𝑆 ) ) |
69 |
67 23 68
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑅 ∨ 𝑆 ) ) |
70 |
65 69
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑅 ∨ 𝑊 ) ) = ( 𝑅 ∨ 𝑆 ) ) |
71 |
60 70
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( 𝑅 ∨ 𝑆 ) ) |
72 |
71
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ∨ ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( 𝐹 ∨ ( 𝑅 ∨ 𝑆 ) ) ) |
73 |
41 56 72
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝐹 ∨ ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
74 |
14 2
|
latj12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ∨ ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
75 |
17 21 39 28 74
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ∨ ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
76 |
73 75
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
77 |
37 76
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
78 |
14 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
79 |
17 39 30 78
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
80 |
14 1 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) = ( 𝑃 ∨ 𝑄 ) ) ) |
81 |
17 16 79 80
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) = ( 𝑃 ∨ 𝑄 ) ) ) |
82 |
77 81
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑅 ∨ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) = ( 𝑃 ∨ 𝑄 ) ) |
83 |
33 82
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) = ( 𝑃 ∨ 𝑄 ) ) |
84 |
9 83
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ 𝐺 ) = ( 𝑃 ∨ 𝑄 ) ) |