Metamath Proof Explorer


Theorem cdleme0aa

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses cdleme0.l = ( le ‘ 𝐾 )
cdleme0.j = ( join ‘ 𝐾 )
cdleme0.m = ( meet ‘ 𝐾 )
cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme0.b 𝐵 = ( Base ‘ 𝐾 )
Assertion cdleme0aa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑈𝐵 )

Proof

Step Hyp Ref Expression
1 cdleme0.l = ( le ‘ 𝐾 )
2 cdleme0.j = ( join ‘ 𝐾 )
3 cdleme0.m = ( meet ‘ 𝐾 )
4 cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme0.b 𝐵 = ( Base ‘ 𝐾 )
8 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝐾 ∈ HL )
9 8 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝐾 ∈ Lat )
10 7 4 atbase ( 𝑃𝐴𝑃𝐵 )
11 10 3ad2ant2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑃𝐵 )
12 7 4 atbase ( 𝑄𝐴𝑄𝐵 )
13 12 3ad2ant3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄𝐵 )
14 7 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
15 9 11 13 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
16 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑊𝐻 )
17 7 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
18 16 17 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑊𝐵 )
19 7 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐵 )
20 9 15 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐵 )
21 6 20 eqeltrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑈𝐵 )