Metamath Proof Explorer


Theorem cdleme0aa

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
cdleme0.b B=BaseK
Assertion cdleme0aa KHLWHPAQAUB

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 cdleme0.b B=BaseK
8 simp1l KHLWHPAQAKHL
9 8 hllatd KHLWHPAQAKLat
10 7 4 atbase PAPB
11 10 3ad2ant2 KHLWHPAQAPB
12 7 4 atbase QAQB
13 12 3ad2ant3 KHLWHPAQAQB
14 7 2 latjcl KLatPBQBP˙QB
15 9 11 13 14 syl3anc KHLWHPAQAP˙QB
16 simp1r KHLWHPAQAWH
17 7 5 lhpbase WHWB
18 16 17 syl KHLWHPAQAWB
19 7 3 latmcl KLatP˙QBWBP˙Q˙WB
20 9 15 18 19 syl3anc KHLWHPAQAP˙Q˙WB
21 6 20 eqeltrid KHLWHPAQAUB