| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme1.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
cdleme1.f |
⊢ 𝐹 = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) |
| 8 |
|
cdleme1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 9 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 11 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
| 12 |
8 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐵 ) |
| 14 |
1 2 3 4 5 6 8
|
cdleme0aa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑈 ∈ 𝐵 ) |
| 15 |
14
|
3adant3r3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑈 ∈ 𝐵 ) |
| 16 |
8 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵 ) → ( 𝑅 ∨ 𝑈 ) ∈ 𝐵 ) |
| 17 |
10 13 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑅 ∨ 𝑈 ) ∈ 𝐵 ) |
| 18 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
| 19 |
8 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
| 21 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
| 22 |
8 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
| 24 |
8 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑅 ) ∈ 𝐵 ) |
| 25 |
10 23 13 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑅 ) ∈ 𝐵 ) |
| 26 |
8 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑊 ∈ 𝐵 ) |
| 28 |
8 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑅 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∈ 𝐵 ) |
| 29 |
10 25 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∈ 𝐵 ) |
| 30 |
8 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∈ 𝐵 ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ∈ 𝐵 ) |
| 31 |
10 20 29 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ∈ 𝐵 ) |
| 32 |
8 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∨ 𝑈 ) ∈ 𝐵 ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ∈ 𝐵 ) → ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ∈ 𝐵 ) |
| 33 |
10 17 31 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ∈ 𝐵 ) |
| 34 |
7 33
|
eqeltrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐹 ∈ 𝐵 ) |