Metamath Proof Explorer


Theorem hlatlej1

Description: A join's first argument is less than or equal to the join. Special case of latlej1 to show an atom is on a line. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses hlatlej.l ˙=K
hlatlej.j ˙=joinK
hlatlej.a A=AtomsK
Assertion hlatlej1 KHLPAQAP˙P˙Q

Proof

Step Hyp Ref Expression
1 hlatlej.l ˙=K
2 hlatlej.j ˙=joinK
3 hlatlej.a A=AtomsK
4 hllat KHLKLat
5 eqid BaseK=BaseK
6 5 3 atbase PAPBaseK
7 5 3 atbase QAQBaseK
8 5 1 2 latlej1 KLatPBaseKQBaseKP˙P˙Q
9 4 6 7 8 syl3an KHLPAQAP˙P˙Q