Metamath Proof Explorer


Theorem hlatlej2

Description: A join's second argument is less than or equal to the join. Special case of latlej2 to show an atom is on a line. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses hlatlej.l ˙ = K
hlatlej.j ˙ = join K
hlatlej.a A = Atoms K
Assertion hlatlej2 K HL P A Q A Q ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 hlatlej.l ˙ = K
2 hlatlej.j ˙ = join K
3 hlatlej.a A = Atoms K
4 1 2 3 hlatlej1 K HL Q A P A Q ˙ Q ˙ P
5 4 3com23 K HL P A Q A Q ˙ Q ˙ P
6 2 3 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
7 5 6 breqtrrd K HL P A Q A Q ˙ P ˙ Q