Metamath Proof Explorer


Theorem hlatlej2

Description: A join's second argument is less than or equal to the join. Special case of latlej2 to show an atom is on a line. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses hlatlej.l = ( le ‘ 𝐾 )
hlatlej.j = ( join ‘ 𝐾 )
hlatlej.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄 ( 𝑃 𝑄 ) )

Proof

Step Hyp Ref Expression
1 hlatlej.l = ( le ‘ 𝐾 )
2 hlatlej.j = ( join ‘ 𝐾 )
3 hlatlej.a 𝐴 = ( Atoms ‘ 𝐾 )
4 1 2 3 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑃𝐴 ) → 𝑄 ( 𝑄 𝑃 ) )
5 4 3com23 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄 ( 𝑄 𝑃 ) )
6 2 3 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
7 5 6 breqtrrd ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄 ( 𝑃 𝑄 ) )