Metamath Proof Explorer


Theorem hlatlej2

Description: A join's second argument is less than or equal to the join. Special case of latlej2 to show an atom is on a line. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses hlatlej.l
|- .<_ = ( le ` K )
hlatlej.j
|- .\/ = ( join ` K )
hlatlej.a
|- A = ( Atoms ` K )
Assertion hlatlej2
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) )

Proof

Step Hyp Ref Expression
1 hlatlej.l
 |-  .<_ = ( le ` K )
2 hlatlej.j
 |-  .\/ = ( join ` K )
3 hlatlej.a
 |-  A = ( Atoms ` K )
4 1 2 3 hlatlej1
 |-  ( ( K e. HL /\ Q e. A /\ P e. A ) -> Q .<_ ( Q .\/ P ) )
5 4 3com23
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( Q .\/ P ) )
6 2 3 hlatjcom
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) )
7 5 6 breqtrrd
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) )