Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cdlemesner.l | |- .<_ = ( le ` K ) |
|
| cdlemesner.j | |- .\/ = ( join ` K ) |
||
| cdlemesner.a | |- A = ( Atoms ` K ) |
||
| cdlemesner.h | |- H = ( LHyp ` K ) |
||
| Assertion | cdlemesner | |- ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S =/= R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemesner.l | |- .<_ = ( le ` K ) |
|
| 2 | cdlemesner.j | |- .\/ = ( join ` K ) |
|
| 3 | cdlemesner.a | |- A = ( Atoms ` K ) |
|
| 4 | cdlemesner.h | |- H = ( LHyp ` K ) |
|
| 5 | nbrne2 | |- ( ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) -> R =/= S ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R =/= S ) |
| 7 | 6 | necomd | |- ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S =/= R ) |