Metamath Proof Explorer


Theorem cdlemg10b

Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? (Contributed by NM, 4-May-2013)

Ref Expression
Hypotheses cdlemg8.l
|- .<_ = ( le ` K )
cdlemg8.j
|- .\/ = ( join ` K )
cdlemg8.m
|- ./\ = ( meet ` K )
cdlemg8.a
|- A = ( Atoms ` K )
cdlemg8.h
|- H = ( LHyp ` K )
cdlemg8.t
|- T = ( ( LTrn ` K ) ` W )
Assertion cdlemg10b
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) .\/ ( F ` Q ) ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l
 |-  .<_ = ( le ` K )
2 cdlemg8.j
 |-  .\/ = ( join ` K )
3 cdlemg8.m
 |-  ./\ = ( meet ` K )
4 cdlemg8.a
 |-  A = ( Atoms ` K )
5 cdlemg8.h
 |-  H = ( LHyp ` K )
6 cdlemg8.t
 |-  T = ( ( LTrn ` K ) ` W )
7 eqid
 |-  ( ( P .\/ Q ) ./\ W ) = ( ( P .\/ Q ) ./\ W )
8 5 6 1 2 4 3 7 cdlemg2m
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) .\/ ( F ` Q ) ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) )