Metamath Proof Explorer


Theorem cdlemg2m

Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h
|- H = ( LHyp ` K )
cdlemg2inv.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg2j.l
|- .<_ = ( le ` K )
cdlemg2j.j
|- .\/ = ( join ` K )
cdlemg2j.a
|- A = ( Atoms ` K )
cdlemg2j.m
|- ./\ = ( meet ` K )
cdlemg2j.u
|- U = ( ( P .\/ Q ) ./\ W )
Assertion cdlemg2m
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) .\/ ( F ` Q ) ) ./\ W ) = U )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h
 |-  H = ( LHyp ` K )
2 cdlemg2inv.t
 |-  T = ( ( LTrn ` K ) ` W )
3 cdlemg2j.l
 |-  .<_ = ( le ` K )
4 cdlemg2j.j
 |-  .\/ = ( join ` K )
5 cdlemg2j.a
 |-  A = ( Atoms ` K )
6 cdlemg2j.m
 |-  ./\ = ( meet ` K )
7 cdlemg2j.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 1 2 3 4 5 6 7 cdlemg2k
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( F ` P ) .\/ ( F ` Q ) ) = ( ( F ` P ) .\/ U ) )
9 8 oveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) .\/ ( F ` Q ) ) ./\ W ) = ( ( ( F ` P ) .\/ U ) ./\ W ) )
10 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( K e. HL /\ W e. H ) )
11 simp3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> F e. T )
12 simp2l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( P e. A /\ -. P .<_ W ) )
13 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
14 3 6 13 5 1 2 ltrnmw
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) ./\ W ) = ( 0. ` K ) )
15 10 11 12 14 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( F ` P ) ./\ W ) = ( 0. ` K ) )
16 15 oveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) ./\ W ) .\/ U ) = ( ( 0. ` K ) .\/ U ) )
17 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> K e. HL )
18 3 5 1 2 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) )
19 10 11 12 18 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) )
20 19 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( F ` P ) e. A )
21 simp1r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> W e. H )
22 simp2ll
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> P e. A )
23 simp2rl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> Q e. A )
24 eqid
 |-  ( Base ` K ) = ( Base ` K )
25 3 4 6 5 1 7 24 cdleme0aa
 |-  ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) )
26 17 21 22 23 25 syl211anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> U e. ( Base ` K ) )
27 24 1 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
28 21 27 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> W e. ( Base ` K ) )
29 17 hllatd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> K e. Lat )
30 24 4 5 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )
31 17 22 23 30 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( P .\/ Q ) e. ( Base ` K ) )
32 24 3 6 latmle2
 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W )
33 29 31 28 32 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( P .\/ Q ) ./\ W ) .<_ W )
34 7 33 eqbrtrid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> U .<_ W )
35 24 3 4 6 5 atmod4i2
 |-  ( ( K e. HL /\ ( ( F ` P ) e. A /\ U e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ U .<_ W ) -> ( ( ( F ` P ) ./\ W ) .\/ U ) = ( ( ( F ` P ) .\/ U ) ./\ W ) )
36 17 20 26 28 34 35 syl131anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) ./\ W ) .\/ U ) = ( ( ( F ` P ) .\/ U ) ./\ W ) )
37 hlol
 |-  ( K e. HL -> K e. OL )
38 17 37 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> K e. OL )
39 24 4 13 olj02
 |-  ( ( K e. OL /\ U e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ U ) = U )
40 38 26 39 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( 0. ` K ) .\/ U ) = U )
41 16 36 40 3eqtr3d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) .\/ U ) ./\ W ) = U )
42 9 41 eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( ( ( F ` P ) .\/ ( F ` Q ) ) ./\ W ) = U )