| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnmw.l |
|- .<_ = ( le ` K ) |
| 2 |
|
ltrnmw.m |
|- ./\ = ( meet ` K ) |
| 3 |
|
ltrnmw.z |
|- .0. = ( 0. ` K ) |
| 4 |
|
ltrnmw.a |
|- A = ( Atoms ` K ) |
| 5 |
|
ltrnmw.h |
|- H = ( LHyp ` K ) |
| 6 |
|
ltrnmw.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 8 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 9 |
1 2 3 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> ( ( F ` P ) ./\ W ) = .0. ) |
| 10 |
7 8 9
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) ./\ W ) = .0. ) |