| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnmw.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
ltrnmw.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
ltrnmw.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 4 |
|
ltrnmw.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
ltrnmw.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
ltrnmw.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 9 |
1 2 3 4 5
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = 0 ) |
| 10 |
7 8 9
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = 0 ) |