Metamath Proof Explorer


Theorem ltrnmw

Description: Property of lattice translation value. Remark below Lemma B in Crawley p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses ltrnmw.l = ( le ‘ 𝐾 )
ltrnmw.m = ( meet ‘ 𝐾 )
ltrnmw.z 0 = ( 0. ‘ 𝐾 )
ltrnmw.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrnmw.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrnmw.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrnmw ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) 𝑊 ) = 0 )

Proof

Step Hyp Ref Expression
1 ltrnmw.l = ( le ‘ 𝐾 )
2 ltrnmw.m = ( meet ‘ 𝐾 )
3 ltrnmw.z 0 = ( 0. ‘ 𝐾 )
4 ltrnmw.a 𝐴 = ( Atoms ‘ 𝐾 )
5 ltrnmw.h 𝐻 = ( LHyp ‘ 𝐾 )
6 ltrnmw.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
9 1 2 3 4 5 lhpmat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) ) → ( ( 𝐹𝑃 ) 𝑊 ) = 0 )
10 7 8 9 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) 𝑊 ) = 0 )