Step |
Hyp |
Ref |
Expression |
1 |
|
dilset.a |
|- A = ( Atoms ` K ) |
2 |
|
dilset.s |
|- S = ( PSubSp ` K ) |
3 |
|
dilset.w |
|- W = ( WAtoms ` K ) |
4 |
|
dilset.m |
|- M = ( PAut ` K ) |
5 |
|
dilset.l |
|- L = ( Dil ` K ) |
6 |
|
elex |
|- ( K e. B -> K e. _V ) |
7 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
8 |
7 1
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
9 |
|
fveq2 |
|- ( k = K -> ( PAut ` k ) = ( PAut ` K ) ) |
10 |
9 4
|
eqtr4di |
|- ( k = K -> ( PAut ` k ) = M ) |
11 |
|
fveq2 |
|- ( k = K -> ( PSubSp ` k ) = ( PSubSp ` K ) ) |
12 |
11 2
|
eqtr4di |
|- ( k = K -> ( PSubSp ` k ) = S ) |
13 |
|
fveq2 |
|- ( k = K -> ( WAtoms ` k ) = ( WAtoms ` K ) ) |
14 |
13 3
|
eqtr4di |
|- ( k = K -> ( WAtoms ` k ) = W ) |
15 |
14
|
fveq1d |
|- ( k = K -> ( ( WAtoms ` k ) ` d ) = ( W ` d ) ) |
16 |
15
|
sseq2d |
|- ( k = K -> ( x C_ ( ( WAtoms ` k ) ` d ) <-> x C_ ( W ` d ) ) ) |
17 |
16
|
imbi1d |
|- ( k = K -> ( ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) <-> ( x C_ ( W ` d ) -> ( f ` x ) = x ) ) ) |
18 |
12 17
|
raleqbidv |
|- ( k = K -> ( A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) <-> A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) ) ) |
19 |
10 18
|
rabeqbidv |
|- ( k = K -> { f e. ( PAut ` k ) | A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) } = { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) |
20 |
8 19
|
mpteq12dv |
|- ( k = K -> ( d e. ( Atoms ` k ) |-> { f e. ( PAut ` k ) | A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) } ) = ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) ) |
21 |
|
df-dilN |
|- Dil = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> { f e. ( PAut ` k ) | A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) } ) ) |
22 |
20 21 1
|
mptfvmpt |
|- ( K e. _V -> ( Dil ` K ) = ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) ) |
23 |
5 22
|
eqtrid |
|- ( K e. _V -> L = ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) ) |
24 |
6 23
|
syl |
|- ( K e. B -> L = ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) ) |