| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdilN |
|- Dil |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vd |
|- d |
| 4 |
|
catm |
|- Atoms |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( Atoms ` k ) |
| 7 |
|
vf |
|- f |
| 8 |
|
cpautN |
|- PAut |
| 9 |
5 8
|
cfv |
|- ( PAut ` k ) |
| 10 |
|
vx |
|- x |
| 11 |
|
cpsubsp |
|- PSubSp |
| 12 |
5 11
|
cfv |
|- ( PSubSp ` k ) |
| 13 |
10
|
cv |
|- x |
| 14 |
|
cwpointsN |
|- WAtoms |
| 15 |
5 14
|
cfv |
|- ( WAtoms ` k ) |
| 16 |
3
|
cv |
|- d |
| 17 |
16 15
|
cfv |
|- ( ( WAtoms ` k ) ` d ) |
| 18 |
13 17
|
wss |
|- x C_ ( ( WAtoms ` k ) ` d ) |
| 19 |
7
|
cv |
|- f |
| 20 |
13 19
|
cfv |
|- ( f ` x ) |
| 21 |
20 13
|
wceq |
|- ( f ` x ) = x |
| 22 |
18 21
|
wi |
|- ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) |
| 23 |
22 10 12
|
wral |
|- A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) |
| 24 |
23 7 9
|
crab |
|- { f e. ( PAut ` k ) | A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) } |
| 25 |
3 6 24
|
cmpt |
|- ( d e. ( Atoms ` k ) |-> { f e. ( PAut ` k ) | A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) } ) |
| 26 |
1 2 25
|
cmpt |
|- ( k e. _V |-> ( d e. ( Atoms ` k ) |-> { f e. ( PAut ` k ) | A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) } ) ) |
| 27 |
0 26
|
wceq |
|- Dil = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> { f e. ( PAut ` k ) | A. x e. ( PSubSp ` k ) ( x C_ ( ( WAtoms ` k ) ` d ) -> ( f ` x ) = x ) } ) ) |