| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctrnN |
|- Trn |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vd |
|- d |
| 4 |
|
catm |
|- Atoms |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( Atoms ` k ) |
| 7 |
|
vf |
|- f |
| 8 |
|
cdilN |
|- Dil |
| 9 |
5 8
|
cfv |
|- ( Dil ` k ) |
| 10 |
3
|
cv |
|- d |
| 11 |
10 9
|
cfv |
|- ( ( Dil ` k ) ` d ) |
| 12 |
|
vq |
|- q |
| 13 |
|
cwpointsN |
|- WAtoms |
| 14 |
5 13
|
cfv |
|- ( WAtoms ` k ) |
| 15 |
10 14
|
cfv |
|- ( ( WAtoms ` k ) ` d ) |
| 16 |
|
vr |
|- r |
| 17 |
12
|
cv |
|- q |
| 18 |
|
cpadd |
|- +P |
| 19 |
5 18
|
cfv |
|- ( +P ` k ) |
| 20 |
7
|
cv |
|- f |
| 21 |
17 20
|
cfv |
|- ( f ` q ) |
| 22 |
17 21 19
|
co |
|- ( q ( +P ` k ) ( f ` q ) ) |
| 23 |
|
cpolN |
|- _|_P |
| 24 |
5 23
|
cfv |
|- ( _|_P ` k ) |
| 25 |
10
|
csn |
|- { d } |
| 26 |
25 24
|
cfv |
|- ( ( _|_P ` k ) ` { d } ) |
| 27 |
22 26
|
cin |
|- ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) |
| 28 |
16
|
cv |
|- r |
| 29 |
28 20
|
cfv |
|- ( f ` r ) |
| 30 |
28 29 19
|
co |
|- ( r ( +P ` k ) ( f ` r ) ) |
| 31 |
30 26
|
cin |
|- ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) |
| 32 |
27 31
|
wceq |
|- ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) |
| 33 |
32 16 15
|
wral |
|- A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) |
| 34 |
33 12 15
|
wral |
|- A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) |
| 35 |
34 7 11
|
crab |
|- { f e. ( ( Dil ` k ) ` d ) | A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) } |
| 36 |
3 6 35
|
cmpt |
|- ( d e. ( Atoms ` k ) |-> { f e. ( ( Dil ` k ) ` d ) | A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) } ) |
| 37 |
1 2 36
|
cmpt |
|- ( k e. _V |-> ( d e. ( Atoms ` k ) |-> { f e. ( ( Dil ` k ) ` d ) | A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) } ) ) |
| 38 |
0 37
|
wceq |
|- Trn = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> { f e. ( ( Dil ` k ) ` d ) | A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) } ) ) |