Metamath Proof Explorer


Definition df-trnN

Description: Define set of all translations. Definition of translation in Crawley p. 111. (Contributed by NM, 4-Feb-2012)

Ref Expression
Assertion df-trnN Trn=kVdAtomskfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctrnN classTrn
1 vk setvark
2 cvv classV
3 vd setvard
4 catm classAtoms
5 1 cv setvark
6 5 4 cfv classAtomsk
7 vf setvarf
8 cdilN classDil
9 5 8 cfv classDilk
10 3 cv setvard
11 10 9 cfv classDilkd
12 vq setvarq
13 cwpointsN classWAtoms
14 5 13 cfv classWAtomsk
15 10 14 cfv classWAtomskd
16 vr setvarr
17 12 cv setvarq
18 cpadd class+𝑃
19 5 18 cfv class+𝑃k
20 7 cv setvarf
21 17 20 cfv classfq
22 17 21 19 co classq+𝑃kfq
23 cpolN class𝑃
24 5 23 cfv class𝑃k
25 10 csn classd
26 25 24 cfv class𝑃kd
27 22 26 cin classq+𝑃kfq𝑃kd
28 16 cv setvarr
29 28 20 cfv classfr
30 28 29 19 co classr+𝑃kfr
31 30 26 cin classr+𝑃kfr𝑃kd
32 27 31 wceq wffq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd
33 32 16 15 wral wffrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd
34 33 12 15 wral wffqWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd
35 34 7 11 crab classfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd
36 3 6 35 cmpt classdAtomskfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd
37 1 2 36 cmpt classkVdAtomskfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd
38 0 37 wceq wffTrn=kVdAtomskfDilkd|qWAtomskdrWAtomskdq+𝑃kfq𝑃kd=r+𝑃kfr𝑃kd