| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctrnN |
⊢ Trn |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vd |
⊢ 𝑑 |
| 4 |
|
catm |
⊢ Atoms |
| 5 |
1
|
cv |
⊢ 𝑘 |
| 6 |
5 4
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
| 7 |
|
vf |
⊢ 𝑓 |
| 8 |
|
cdilN |
⊢ Dil |
| 9 |
5 8
|
cfv |
⊢ ( Dil ‘ 𝑘 ) |
| 10 |
3
|
cv |
⊢ 𝑑 |
| 11 |
10 9
|
cfv |
⊢ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) |
| 12 |
|
vq |
⊢ 𝑞 |
| 13 |
|
cwpointsN |
⊢ WAtoms |
| 14 |
5 13
|
cfv |
⊢ ( WAtoms ‘ 𝑘 ) |
| 15 |
10 14
|
cfv |
⊢ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) |
| 16 |
|
vr |
⊢ 𝑟 |
| 17 |
12
|
cv |
⊢ 𝑞 |
| 18 |
|
cpadd |
⊢ +𝑃 |
| 19 |
5 18
|
cfv |
⊢ ( +𝑃 ‘ 𝑘 ) |
| 20 |
7
|
cv |
⊢ 𝑓 |
| 21 |
17 20
|
cfv |
⊢ ( 𝑓 ‘ 𝑞 ) |
| 22 |
17 21 19
|
co |
⊢ ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) |
| 23 |
|
cpolN |
⊢ ⊥𝑃 |
| 24 |
5 23
|
cfv |
⊢ ( ⊥𝑃 ‘ 𝑘 ) |
| 25 |
10
|
csn |
⊢ { 𝑑 } |
| 26 |
25 24
|
cfv |
⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) |
| 27 |
22 26
|
cin |
⊢ ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) |
| 28 |
16
|
cv |
⊢ 𝑟 |
| 29 |
28 20
|
cfv |
⊢ ( 𝑓 ‘ 𝑟 ) |
| 30 |
28 29 19
|
co |
⊢ ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) |
| 31 |
30 26
|
cin |
⊢ ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) |
| 32 |
27 31
|
wceq |
⊢ ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) |
| 33 |
32 16 15
|
wral |
⊢ ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) |
| 34 |
33 12 15
|
wral |
⊢ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) |
| 35 |
34 7 11
|
crab |
⊢ { 𝑓 ∈ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) } |
| 36 |
3 6 35
|
cmpt |
⊢ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) } ) |
| 37 |
1 2 36
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) } ) ) |
| 38 |
0 37
|
wceq |
⊢ Trn = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( ( Dil ‘ 𝑘 ) ‘ 𝑑 ) ∣ ∀ 𝑞 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ∀ 𝑟 ∈ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ( ( 𝑞 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑞 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( ( 𝑟 ( +𝑃 ‘ 𝑘 ) ( 𝑓 ‘ 𝑟 ) ) ∩ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) } ) ) |